当前位置:首页 > 搞笑短信 > 正文内容

pandas缺失数据处理大全

2000feng2年前 (2022-08-27)搞笑短信279

作者 | 东哥起飞

利用闲暇之余将有关数据清洗、数据分析的一些技能再次进行分类,里面也包含了我平时用到的一些小技巧,此次就从数据清洗缺失值处理走起~

所有数据和代码可在我的GitHub获取:

https://github.com/xiaoyusmd/PythonDataScience

一、缺失值类型

pandas中,缺失数据显示为NaN。缺失值有3种表示方法,np.nannonepd.NA

1、np.nan

缺失值有个特点(坑),它不等于任何值,连自己都不相等。如果用nan和任何其它值比较都会返回nan

np.nan == np.nan

>> False

也正由于这个特点,在数据集读入以后,不论列是什么类型的数据,默认的缺失值全为np.nan

因为nanNumpy中的类型是浮点,因此整型列会转为浮点;而字符型由于无法转化为浮点型,只能归并为object类型(O),原来是浮点型的则类型不变。

type(np.nan)

>> float

pd.Series([1,2,3]).dtype>> dtype(int64)pd.Series([1,np.nan,3]).dtype>> dtype(float64)

初学者做数据处理遇见object类型会发懵,不知道这是个啥,明明是字符型,导入后就变了,其实是因为缺失值导致的。

除此之外,还要介绍一种针对时间序列的缺失值,它是单独存在的,用NaT表示,是pandas的内置类型,可以视为时间序列版的np.nan,也是与自己不相等。

s_time = pd.Series([pd.Timestamp(20220101)]*3)

s_time

>> 02022-01-01

12022-01-01

22022-01-01

dtype:datetime64[ns]

-----------------

s_time[2] = pd.NaT

s_time

>> 02022-01-01

12022-01-01

2 NaT

dtype:datetime64[ns]

2、None

还有一种就是None,它要比nan好那么一点,因为它至少自己与自己相等。

None == None

>> True

在传入数值类型后,会自动变为np.nan

type(pd.Series([1,None])[1])>> numpy.float64

只有当传入object类型时是不变的,因此可以认为如果不是人工命名为None的话,它基本不会自动出现在pandas中,所以None大家基本也看不到。

type(pd.Series([1,None],dtype=O)[1])>> NoneType

3、NA标量

pandas1.0以后的版本中引入了一个专门表示缺失值的标量pd.NA,它代表空整数、空布尔值、空字符,这个功能目前处于实验阶段。

开发者也注意到了这点,对于不同数据类型采取不同的缺失值表示会很乱。pd.NA就是为了统一而存在的。pd.NA的目标是提供一个缺失值指示器,可以在各种数据类型中一致使用(而不是np.nan、None或者NaT分情况使用)。

s_new = pd.Series([1, 2], dtype="Int64")

s_new

>> 01

12

dtype: Int64

-----------------

s_new[1] = pd.NaT

s_new

>> 01

1

dtype: Int64

同理,对于布尔型、字符型一样不会改变原有数据类型,这样就解决了原来动不动就变成object类型的麻烦了。

下面是pd.NA的一些常用算术运算和比较运算的示例:

算术运算

加法

pd.NA + 1>>

-----------

乘法

"a" * pd.NA>>

-----------

以下两种其中结果为1

pd.NA ** 0>> 1

-----------

1 ** pd.NA>> 1

比较运算

pd.NA == pd.NA

>>

-----------

pd.NA 2.5>>

-----------

np.log(pd.NA)

>>

-----------

np.add(pd.NA, 1)>>

二、缺失值判断

了解了缺失值的几种形式后,我们要知道如何判断缺失值。对于一个dataframe而言,判断缺失的主要方法就是isnull()或者isna(),这两个方法会直接返回TrueFalse的布尔值。可以是对整个dataframe或者某个列。

df = pd.DataFrame({

A:[a1,a1,a2,a3],B:[b1,None,b2,b3],C:[1,2,3,4],D:[5,None,9,10]})

将无穷设置为缺失值

pd.options.mode.use_inf_as_na = True

1、对整个dataframe判断缺失

df.isnull()

>> A B C D

0FalseFalseFalseFalse

1FalseTrueFalseTrue

2FalseFalseFalseFalse

3FalseFalseFalseFalse

2、对某个列判断缺失

df[C].isnull()>> 0False

1False

2False

3False

Name: C, dtype: bool

如果想取非缺失可以用notna(),使用方法是一样的,结果相反。

三、缺失值统计

1、列缺失

一般我们会对一个dataframe进行缺失统计,查看每个列有多少缺失,如果缺失率过高再进行删除或者插值等操作。那么直接在上面的isnull()返回的结果上直接应用.sum()即可,axis默认等于0,0是列,1是行。

列缺失统计

isnull().sum(axis=0)

2、行缺失

但是很多情况下,我们也需要对进行缺失值判断。比如一行数据可能一个值都没有,如果这个样本进入模型,会造成很大的干扰。因此,行列两个缺失率通常都要查看并统计。

操作很简单,只需要在sum()中设置axis=1即可。

行缺失统计

isnull().sum(axis=1)

3、缺失率

有时我不仅想要知道缺失的数量,我更想知道缺失的比例,即缺失率。正常可能会想到用上面求得数值再比上总行数。但其实这里有个小技巧可以一步就实现。

缺失率

df.isnull().sum(axis=0)/df.shape[0]

缺失率(一步到位)

isnull().mean()

四、缺失值筛选

筛选需要loc配合完成,对于行和列的缺失筛选如下:

筛选有缺失值的行

df.loc[df.isnull().any(1)]>> A B C D1 a1 None2 NaN

-----------------

筛选有缺失值的列

df.loc[:,df.isnull().any()]

>> B D

0 b1 5.0

1None NaN

2 b2 9.0

3 b3 10.0

如果要查询没有缺失值的行和列,可以对表达式用取反~操作:

df.loc[~(df.isnull().any(1))]>> A B C D

0 a1 b1 15.0

2 a2 b2 39.0

3 a3 b3 410.0

上面使用了any判断只要有缺失就进行筛选,也可以用all判断是否全部缺失,同样可以对行里进行判断,如果整列或者整行都是缺失值,那么这个变量或者样本就失去了分析的意义,可以考虑删除。

五、缺失值填充

一般我们对缺失值有两种处理方法,一种是直接删除,另外一种是保留并填充。下面先介绍填充的方法fillna

将dataframe所有缺失值填充为0

df.fillna(0)>> A B C D

0 a1 b1 15.0

1 a1 020.0

2 a2 b2 39.0

3 a3 b3 410.0

--------------

将D列缺失值填充为-999

df.D.fillna(-999)>> 05

1-999

29

310

Name: D, dtype: object

方法很简单,但使用时需要注意一些参数。

inplace:可以设置fillna(0, inplace=True)来让填充生效,原dataFrame被填充。

methond:可以设置methond方法来实现向前或者向后填充,pad/ffill为向前填充,bfill/backfill为向后填充,比如df.fillna(methond=ffill),也可以简写为df.ffill()

df.ffill()

>> A B C D

0 a1 b1 15.0

1 a1 b1 25.0

2 a2 b2 39.0

3 a3 b3 410.0

原缺失值都会按照前一个值来填充(B列1行,D列1行)。

除了用前后值来填充,也可以用整个列的均值来填充,比如对D列的其它非缺失值的平均值8来填充缺失值。

df.D.fillna(df.D.mean())

>> 05.0

18.0

29.0

310.0

Name: D, dtype: float64

六、缺失值删除

删除缺失值也非情况,比如是全删除还是删除比较高缺失率,这个要看自己的容忍程度,真实的数据必然会存在缺失的,这个无法避免。而且缺失在某些情况下也代表了一定的含义,要视情况而定。

1、全部直接删除

全部直接删除

df.dropna()

>> A B C D

0 a1 b1 15.0

2 a2 b2 39.0

3 a3 b3 410.0

2、行缺失删除

行缺失删除

df.dropna(axis=0)>> A B C D

0 a1 b1 15.0

2 a2 b2 39.0

3 a3 b3 410.0

3、列缺失删除

列缺失删除

df.dropna(axis=1)>> A C

0 a1 1

1 a1 2

2 a2 3

3 a3 4

-------------

删除指定列范围内的缺失,因为C列无缺失,所以最后没有变化

df.dropna(subset=[C])>> A B C D

0 a1 b1 15.0

1 a1 None2 NaN

2 a2 b2 39.0

3 a3 b3 410.0

4、按缺失率删除

这个可以考虑用筛选的方法来实现,比如要删除列缺失大于0.1的(即筛选小于0.1的)。

df.loc[:,df.isnull().mean(axis=0) 0.1]>> A C

0 a1 1

1 a1 2

2 a2 3

3 a3 4

-------------

删除行缺失大于0.1的

df.loc[df.isnull().mean(axis=1) 0.1]>> A B C D

0 a1 b1 15.0

2 a2 b2 39.0

3 a3 b3 410.0

七、缺失值参与计算

如果不对缺失值处理,那么缺失值会按照什么逻辑进行计算呢?

下面我们一起看一下各种运算下缺失值的参与逻辑。

1、加法

df

>>A B C D

0 a1 b1 15.0

1 a1 None2 NaN

2 a2 b2 39.0

3 a3 b3 410.0

---------------

对所有列求和

df.sum()

>> A    a1a1a2a3   C          10   D          24

可以看到,加法是会忽略缺失值的。

2、累加

对D列进行累加

df.D.cumsum()

>> 05.01     NaN

214.0

324.0

Name: D, dtype: float64

---------------

df.D.cumsum(skipna=False)>> 05.01    NaN2    NaN3    NaN

Name: D, dtype: float64

cumsum累加会忽略NA,但值会保留在列中,可以使用skipna=False跳过有缺失值的计算并返回缺失值。

3、计数

对列计数

df.count()

>> A    4   B    3   C    4   D    3

dtype: int64

缺失值不进入计数范围里。

4、聚合分组

df.groupby(B).sum()>> C D

B

b1 15.0b2 39.0b3 410.0

---------------

df.groupby(B,dropna=False).sum()>> C D

B

b1 15.0b2 39.0b3 410.0NaN 20.0

聚合时会默认忽略缺失值,如果要缺失值计入到分组里,可以设置dropna=False。这个用法和其它比如value_counts是一样的,有的时候需要看缺失值的数量。

以上就是所有关于缺失值的常用操作了,从理解缺失值的3种表现形式开始,到缺失值判断、统计、处理、计算等。

扫描二维码推送至手机访问。

版权声明:本文由风千笑话网发布,如需转载请注明出处。

本文链接:http://www.idc0531.com/?id=1463

分享给朋友:

“pandas缺失数据处理大全” 的相关文章

幽默笑话大全,笑到抽筋的交通事故

幽默笑话大全,笑到抽筋的交通事故

发生了交通意外,许多人围观,一名记者挤不进去,灵机一动他大喊:我是伤者的儿子,请让让!围观者果然让出一条路,哪位记者过去一看,压死的是一头猪!为了防止别的汽车追尾,张三在新车后面挂上了别吻我的牌子。可一上路,就被别的车子撞上了,他气愤的向肇事司机索要500元修车费。肇事司机说:擦点一点漆就要500块...

七个逗女朋友开心的小笑话

七个逗女朋友开心的小笑话

1. boy:我可以向你问路吗?girl:到哪里?boy:到你心里.boy:你的腿一定很累吧?!girl:为什么?boy:因为你在我的脑海里跑了一整天boy:(看着她的衬衫标签)girl:你在干嘛?boy:哦,我想知道你是不是天堂制造的.boy:我今天很不顺利,看见漂亮女生会让我心情好一点,你可以为...

演讲时,如何讲笑话才最有效?

演讲时,如何讲笑话才最有效?

我有一次做演讲。前面有位演讲嘉宾讲演讲如何不紧张,拿我举例子开玩笑。该我讲了,我上去演讲的第1句话就是:I feel so nervous right now as I hope I wont fail miserable in this speech(我现在感觉特别紧张,我希望我千万别在这次演讲中...

“阖家”与“合家”有什么区别?节日祝福错用汉字,容易闹笑话

“阖家”与“合家”有什么区别?节日祝福错用汉字,容易闹笑话

对许多中国学生来说,英语是他们难以跨越的一道鸿沟,但对于外国学生来说,汉语才是真正的噩梦,汉语的学习难度要比英语难上千百倍,很多时候就连中国人都搞不清汉语的真正用法,更不用说其他国家的人。不信吗?那问大家一个简单的问题:阖家和合家有什么区别?相信很多人都答不上来。年关将近,届时祝福的短信和贺卡是必不...

开心笑话:最近我的走步排名出现个大咖,强迫症的我短信给男神

开心笑话:最近我的走步排名出现个大咖,强迫症的我短信给男神

最近我的走步排名出现个大咖,强迫症的我短信给男神:你最近不行了啊,估计是有对比了,我的步数排行有个大咖每天30000多,体现不出来你厉害了。男神:把他删了,你得眼里必须只有我!老板的家庭很幸福。同事们问他家婆媳关系这么和谐是什么怎么做到的,他笑了笑答:我经常在他们之间挑拨离间,做一些坏事,然后再故意...

有哪些可以笑死人的笑话?

有哪些可以笑死人的笑话?

只要是我朋友 ,谁没钱了就跟我说, 让我知道原来不止我一个人穷。-01-留存备用所以,你要快乐!-02-生病也不能放弃吃瓜吃瓜人吃瓜魂-03-国庆见家长的仪式感满满的仪式感!-04-求证,是真的吗?双标啊哈哈-05-成了家庭聚餐的一颗棋子棋子就棋子吧-06-一不小心桃子逃走了桃有自己的想法-07-大...